
Issue Types

Stories
A "Story" represents new (or revised) functionality that we intend to ship to the end user. It is
the basic building block of our development work. In its initial conception, a story should
represent what we want the software to do, but not necessarily how. It should have an explicit
(or obvious) motivation from the end user’s perspective as to why they would want this. It is
called a “story” because it should represent a narrative of the user interacting with our software
to accomplish a real-world goal. Certainly the details may draw us into engineering
considerations that are far removed from the end user experience, but they should always be
traceable back to the end user’s “why”. As the story evolves from its initial conception, it will
accumulate more of the “how” decisions.

A story should represent a coherent package of work, and be expected to take less than 2
weeks’ worth of engineering effort. Stories larger than this should be broken down. Ideally, the
work should be broken down into a series of stories geared towards achieving a “minimum
viable product” as quickly as possible, and then evolving the system towards greater utility in
clearly-defined stages. (This approach can be said to split the work into “vertical slices”, as
opposed to “horizontal slices”. Stories should not be broken down into horizontal slices, e.g.,
first do all the under-the-covers work, then do all the middle tier stuff, and then finally the user
interface. This is undesirable because it represents long stretches of time where the software is
in a poorly-understood and loosely-verified state, making it hard to say what we’ve
accomplished or how much is left to do.) Another technique to handle large efforts over a long
timeframe is to hide them behind a Debug option and leave the old subsystem in place until the
new subsystem is ready to replace it.

Epics
An “Epic” is a grouping mechanism for a series of related stories. An epic does not represent
work in and of itself -- it must be composed of one or more stories. An epic will almost certainly
span several sprints, and may even cut across multiple releases of the software. Epics are
largely optional, and should only be used to the extent that they are helpful in organizing our
work. If a large story is broken down into multiple stories, then almost certainly they should be
linked together under an Epic.

Bugs
Bugs are bugs -- software behaviour that deviates from our intention. See “Bugs vs Stories”
below for a more detailed explanation of the difference between bugs and stories.

Tasks
A "Task" represents other necessary work, such as infrastructure tasks (e.g., build machine
configuration, QA automation, etc.) or ongoing maintenance. A task differs from bugs and
stories in that it does not represent work product that gets shipped to the customer.

Subtasks
Any issue type (Stories, Bugs, or Tasks) can have Subtasks. This allows you to break down the
issue in a more structured fashion. Each subtask shows up separately on the swim lanes, and
can move independently through the workflow.

Use of subtasks is optional. Generally, if a story needs to be broken down in a structured
fashion, we break it down into multiple stories under an epic. All the particular details are
handled in prose in the Description field. Subtasks sort of fill a middle-ground between
loosely-structured text in the Description field and the full-on structure of epics/stories.

Bugs vs Stories
To do things well and in good order, we should only write up bugs for things that are really bugs,
for a restrictive definition of “bug”. All other work should be handled as Stories. For clarification:

Bugs
- When actual behaviour differs from intended behaviour (“intended” meaning: the

developer actually attempted to make it behave a certain way)
- Regressions (something that previously worked is now broken)
- Unintended side-effects
- Manifestly obvious, egregious oversights

Not Bugs
- Newly discovered requirements
- Unanticipated scenarios
- Disagreement over how it should behave
- Aesthetic judgements
- Breakage due to external factors (e.g., new OS versions, updated hosts or plugins)

The reason for a restrictive definition of “bug” is that we want to fast-track bugs (especially
regressions), while allowing stories to proceed through the usual process in priority-order. Bugs
should be exceptional occurrences; we don’t want unnecessary fast-tracking to overwhelm the
normal flow of development.

Writing Up Issues
Issues are written up in Jira. First determine if it is a Story, a Bug, or a Task. The issue should
be given at least a Summary. Include other information (if known) in the Description field. Bugs
should have easily-followed reproduction steps, along with affected OS’s in the Environment
field, and build number. Select a “Component” field, which has the useful effect of automatically
assigning it to the responsible engineer. If there are questions about which Component or who
should be assigned, assign it to the Scrum Master. If it’s already been decided what release it
should be a part of, set the Release and move it to the top of the backlog (otherwise, it will be
triaged by the Scrum Master later). If it’s a regression, add it to the currently-active sprint.

The Backlog
The backlog is a ranked list of all the work we intend to do, or even are thinking about doing,
ever in the future. At this level, it's not tied to any particular release or timeframe. An important
aspect of the backlog is that it is strictly ordered, with the most important items on top. The
definition of "important" is a little flexible -- it's not just what would be most valuable, but also
some consideration of a back-of-the-envelope Return On Investment calculation (business
value divided by engineering effort), and some consideration of any overarching plan of what
features we want to land when. The stories are rough and high-level at this point.

Releases
Releases are planned releases of software to the market. They can also be interim releases
(such as betas), or internal milestones.

For a release, we create a release backlog. we take items from the general backlog and move
them into the release backlog. This becomes the definition of the release -- everything that we
intend to ship for that release. Certainly, plans change over time, but it should always represent
our current best understanding. Like the general backlog, it is also strictly ranked, with the idea
that the stuff we really need gets in first, and then the stuff at the bottom gets considered for
trade-offs of features-vs-ship-date. As items bubble up to the top of the release backlog, they
need to be further defined.

For a release, we may create a “consider” line in the backlog. Issues above the line are
expected to be in the release. Issues below the line are being tracked for consideration -- they
may be included, depending on how we want to trade off getting more features against the ship
date.

Backlog Grooming
The backlog should be “groomed” regularly. This involves triaging new issues (integrating them
into the priority order and assigning them a release if known), and ensuring that the priority
order and release assignments are up-to-date with our latest thinking. Near the end of the
cycle, grooming also involves making the tough decisions as to which issues will make the cut
and which issues will get pushed to a later release.

Issues enter the backlog without much detail. This is to be expected. As they move closer to
the top of the backlog, they should get additional detail. Ideally, at the point when they are
pulled into a sprint, they should already have sufficient detail to estimate the effort required to
finish the task, and as much detail as is necessary so that everyone on the team has a good
understanding of what the solution will look like in the end. Certainly, the solution will be refined
as it is developed (which should be documented in the story’s description or comments).
Various team members may be asked to flesh out the details on upcoming stories, so that they
are ready to go when they are pulled into a future sprint.

Sprints
Sprints are a repeated chunk of time -- 2 weeks in our case -- that form the cadence of our
ongoing development. We move issues from the backlog into the sprint to be worked on. A
sprint starts with the Sprint Planning Meeting, has Daily Standups as we go, and ends with a
Retrospective. More details on those below.

Sprint Planning
At the Sprint Planning meeting, our goal is to determine which issues will be worked on in the
upcoming Sprint. The team works from top-down in the Release Backlog, pulling issues into
sprint, fleshing out details as necessary, and assigning team members. Issues are pulled in
until everyone is expected to be comfortably occupied for the course of the sprint. Ideally,
issues are pulled in strictly from the top of the backlog, but accommodations may be made to
balance team member’s individual workloads.

The preceding sprint is first closed out before planning the upcoming sprint. This involves
closing out as many of the open issues as possible, and moving the remaining open issues to
the upcoming sprint. The stories should also be reviewed to understand why the work was not
finished, and if any action needs to be taken to make sure they don’t just roll through another
sprint. (It is normal that some work simply remains to be done because there just wasn’t
enough time to accomplish it.) It is assumed that these issues are of higher priority than any
new work (otherwise they wouldn’t have gotten into the preceding sprint in the first place).

Workflow

To Do
Issues begin in the “To Do” state. When a team member commences work on the issue, they
should move it to “In Progress”. For odd tasks that don’t really have a “development” stage,
they should move straight to the “Testing in Progress” stage (for example, a task to verify that
the software works with newly-released OS versions or hosts/plugins).

In Progress
While a developer is fixing or implementing an issue, it should be in the “In Progress” state.
When a developer completes the issue, they move it to the “Ready for Testing” phase. Assign it
to the appropriate tester, if known. (Assigning it to a tester will speed the process, although
testers will also sweep for issues in the “Ready for Testing” phase that are not assigned to a
tester.)

The developer must ensure that there is a means for the tester to verify the issue. Usually, this
is simply via the user interface -- in which case, no special handling is needed. If that is not
possible (e.g., it involves some new back-end work that is not available via the normal user
interface), the developer must figure out another way to verify: make a canned test available via
the Debug menu, or unit tests, or some other test using an automation framework, or even just
another developer stepping through in the debugger.

The developer should certainly test their own work before handing it off to the tester. The
developer should not rely on the tester to smoke out obvious issues that can be found by simply
running the obvious scenarios. Certainly the developer can rely on the tester having access to
a broader array of OS versions and test data, but the developer should have a reasonable
expectation that they are producing quality software prior to the testing stage.

For odd tasks that don’t really have a testing stage, the issue can skip to “Done”. This should
be used sparingly, and only if there truly is no point in having another person double-check that
the desired outcome has been achieved.

Ready for Testing
Issues that are dev-complete accumulate in Ready for Testing. When a tester begins working
the issue, they should move it to “Testing in Progress”.

Testers should regularly look for issues in the “Ready for Testing” state that are not assigned to
a tester, and assign them as appropriate.

Testing in Progress
In this state, a tester is actively verifying that the purported solution fulfills the criteria specified in
the issue, and that it does not cause unintended side-effects elsewhere.

If some fundamental problem prevents the tester from even starting to test the issue, assign it
back to the developer and move it back to “In Progress”, with a comment on what is preventing
testing. (Optionally send a sternly-worded, pointed email to the developer asking if they even
tried running it at all.)

If a problem is discovered during testing, do one of the following: for simple issues (i.e., the
issue is only a single thing that manifestly either works or it doesn’t), assign it back to the
developer and move it back to “In Progress” (with a comment describing the problem). For
more complex issues: open a new bug, schedule it in the current sprint, assign it to the
developer, and link it as “blocking” this issue. This is especially important if multiple problems
are found, so that they can be tracked properly.

An issue cannot move past the Testing in Progress state until the implementation satisfies all
the requirements of the issue, all of its “blocking” issues are themselves moved to “Done”, and
there are no unintended side-effects. (To be sure, the tester cannot regression-test the entire
program on every issue, but a certain level of care should be taken to test around the issue in
areas that are likely to be affected.)

A story should not be moved to “Done” until the code is in a shippable state. There are two
aspects to this: first, it should meet our standard of quality. I.e., whatever it is purported to do, it
does correctly and without unintended side-effects. The other aspect is, as a matter of
completeness, would we want to release it to the market in its current state? The standard of
quality must always be met before moving a story to Done, but the standard of completeness
has a bit more flexibility -- if this story is just one component of a larger series of work, it does
not necessarily have to represent a “complete” solution, i.e., one that we are ready to send to
the market. Some consideration should be given to “hiding” the incomplete implementation
behind a Debug option (or similar), although this is not strictly required. Certainly it should be
whole as far as it goes, i.e., no dangling buttons that aren’t hooked up to anything, or other such
things.

If much worthwhile implementation has been accomplished, but some final wrinkle is preventing
the issue from moving to “Done”, we have the option of splitting the story. To do this, open a
new story to cover the hard case, so that the rest of the work can be verified and closed. This
should only be done if the completed portions of the story form a valid, whole, coherent story on
its own. We should not split a story as a way of ducking a problem or kicking it down the road.

If there truly is a show-stopping problem, we should either resolve it, or find a way to set aside
the incomplete work (i.e., disable/hide it) until the problem can be resolved.

Done
An issue should not move to “Done” until it is truly done -- implemented and verified, with no
unintended side-effects. “Done” issues are accumulated into Release Notes for the release it is
assigned to. At this point, the issue enters into the historical record and should no longer be
edited.

Special Situations

Problems Found After “Done”
Of course, it is possible that problems will be found with a story after it’s been moved to “Done”,
perhaps because something was overlooked, or because someone remembers some other
scenario that really ought to have been part of the story. If we’re still in the same sprint as when
the work was completed, go ahead and undo the change to “Done” and carry on as if it never
was marked as “Done”. But if the story is “Done” and the corresponding sprint is past, leave
that story as-is. Instead, open a new story with a description of the new requirements, and link
it to the previous story as “relates to”.

Regressions
If something that had previously worked is now broken, write up a bug per usual. Regressions
should go to the top of the backlog and assigned to the current release. Regressions should be
addressed before starting any other new work -- ideally by fixing them, but otherwise by coming
up with some other plan to mitigate them.

If it can be determined that some in-progress work caused the regression, link it to the new bug
as “is blocked by”. Don’t do this for work that is in a previous sprint and already marked Done --
instead, just link it as “relates to”.

Closing Issues for Other Reasons
If an issue is written up and it is discovered that it had already been written up, this new issue
should be closed out as a duplicate. Link it to the other issue as “duplicates”. Move it to Done,
and clear out the Fix Version field (the Fix Version field must be cleared to prevent it from
showing up in the release notes). If there is useful information in the duplicate issue that was

not present in the original write-up, incorporate that info into the original issue, either in the
Description or Comments.

If we decide that we will not take action on an issue, perhaps because we could not reproduce it
or we decided to go another direction, do the following: add a Comment that describes the
decision, clear out the Fix Version field if necessary, and move it to “Done”.

Note that we do not use the “Resolution” field. If something is Done and has a Fix Version, that
means the issue was implemented. If it is Done but does not have a Fix Version, that means it
was closed without taking action (and see the Comments for why).

Daily Standup
On a daily basis, each team member in turn answers these three questions:

- What did you do since last time?
- What will you do until next time?
- Is there anything in your way?

As each team member answers these questions, the other team members have an opportunity
to see how the work affects them -- perhaps it will come to them next in the workflow, or it may
conflict with something they are doing. It provides an opportunity for anyone on the team to say
“wait, what?” in case something is going off the rails or hasn’t been communicated effectively to
the rest of the team. If a team member reports that something is in the way, the team should
figure out what can be done to remove the block (this may involve an additional meeting or
conversation outside of the Daily Standup).

The Daily Standup should take no more than 15 minutes. If there are bigger issues to discuss,
they should be deferred to another meeting or conversation with the appropriate personnel.

Our Daily Standup takes the form of a shared Google doc and a calendar reminder to have it
updated by 11:00 Eastern:

https://docs.google.com/document/d/1FsjPKUhS__7cxoF1mD0rmsUWoCcJ-xox7u5BvSrVi20/e
dit

Retrospective
At the end of each sprint, we meet to have a Retrospective. At the Retrospective, the team
collaboratively answers these questions:

https://docs.google.com/document/d/1FsjPKUhS__7cxoF1mD0rmsUWoCcJ-xox7u5BvSrVi20/edit
https://docs.google.com/document/d/1FsjPKUhS__7cxoF1mD0rmsUWoCcJ-xox7u5BvSrVi20/edit

- What went well?
- What went poorly?
- What should we do differently?

The goal of the Retrospective is to do continuous process improvement around our
development methodology. Any aspect of our process is fair game for improvement, and we
should have a bias towards experimentation. The meeting should produce particular Action
Items assigned to individuals to address issues that arose during the discussion. Our
Retrospective takes the form of a RingCentral meeting on the last day of the sprint, with the
outcomes recorded in a Google doc:

https://docs.google.com/a/alienskin.com/document/d/1Voh8SQuisEYPIbqY-xzLuzFMetpUrJClYl
JOVyD1jMI/edit?usp=sharing

Scrum Master
The “Scrum Master” role is held by a member of the team. It is more of a bookkeeping role than
a supervisory role (ideally, the team and the individuals on the team should be largely
self-managing). Duties include:

- Facilitates the usual meetings (planning, retrospective, daily standup)
- Runs down blocker issues
- Works with broader organization (management, marketing, etc.) to define the backlog
- Keeps backlog “groomed” (refining details & estimates with the help of others as

necessary)
- Triages new stories and bugs as they come in
- Prepares reports for the broader organization
- Serves as a resource for how to solve process problems in an agile fashion
- Drives process evolution

https://docs.google.com/a/alienskin.com/document/d/1Voh8SQuisEYPIbqY-xzLuzFMetpUrJClYlJOVyD1jMI/edit?usp=sharing
https://docs.google.com/a/alienskin.com/document/d/1Voh8SQuisEYPIbqY-xzLuzFMetpUrJClYlJOVyD1jMI/edit?usp=sharing

